很多做数据分析或者刚接触数据分析的小伙伴,不知道怎么做数据分析?一点思维都没有,今天小编给大家盘点2万名数据分析师常用的数据分析方法有哪些?希望看完此文的小伙伴,有一个清晰的数据分析思维。
数据分析思维混乱的小伙伴,需要宏观的方法论和微观的方法来指导。
方法论和方法有什么区别?
方法论是从宏观角度出发,从管理和业务的角度提出的分析框架,指导我们接下来具体分析的方向。方法是微观的概念,是指我们在具体分析过程中使用的方法。
上海数据分析网数据分析方法论
数据分析的方法论很多,这里我给大家介绍一些常见的框架。
pest分析法:pest 为一种企业所处宏观环境分析模型,从政治(politics)、经济(economy)、社会(society)、技术(technology)四个方面分析内外环境,适用于宏观分析。四点因素也被称之为“pest有害物”,pest要求高级管理层具备相关的能力及素养。pest分析与外部总体环境的因素互相结合就可归纳出swot分析中的机会与威胁。pest/pestle、swot 与 slept 可以作为企业与环境分析的基础工具。swot分析法:从优势(strength)、劣势(weakness)、机遇(opportunity)、威胁(threat)四个方面分析内外环境,适用于宏观分析。swot分析法是用来确定企业自身的竞争优势、竞争劣势、机会和威胁,从而将公司的战略与公司内部资源、外部环境有机地结合起来的一种科学的分析方法。运用这种方法,可以对研究对象所处的情景进行全面、系统、准确的研究,从而根据研究结果制定相应的发展战略、计划以及对策等。5w2h分析法:从why、when、where、what、who、how、how much 7个常见的维度分析问题。广泛用于企业管理和技术活动,对于决策和执行性的活动措施也非常有帮助,也有助于弥补考虑问题的疏漏。4p理论:经典营销理论,认为产品(product)、价格(price)、渠道(place)和促销(promote)是影响市场的重要因素。aarrr:增长黑客的海盗法则,精益创业的重要框架,从获取(acquisition)、激活(activition)、留存(retention)、变现(revenue)和推荐(referral)5个环节增长增长。aarrr在应用推广运营各个层次(各个阶段)需要关注的一些指标。在整个aarrr模型中,这些量化指标都具有很重要的地位,而且很多指标的影响力是跨多个层次的。及时准确地获取这些指标的具体数据,对于应用的成功运营是必不可少的。
数据分析的方法论很多,这里不能一一列举;没有最好的方法论,只有最合适的。
从数据分析方法论也可得知,数据分析的意义在于将杂乱无章的数据转化为清晰可见的可视图,从而进行精准决策。“大数据时代,技术和分析哪个更重要”一文中也阐述了分析的重要性。
上海数据分析网数据分析的七个方法
1、趋势分析
趋势分析是最简单、最基础,也是最常见的数据监测与数据分析方法。通常我们在数据分析产品中建立一张数据指标的线图或者柱状图,然后持续观察,重点关注异常值。
在这个过程中,我们要选定第一关键指标(omtm,one metric that metter),而不要被虚荣指标(vanity metrics )所迷惑。
以社交类app为例,如果我们将下载量作为第一关键指标,可能就会走偏;因为用户下载app并不代表他使用了你的产品。在这种情况下,建议将dau(daily active users,日活跃用户)作为第一关键指标,而且是启动并且执行了某个操作的用户才能算上去;这样的指标才有实际意义,运营人员要核心关注这类指标。
2、多维分解
多维分解是指从业务需求出发,将指标从多个维度进行拆分;这里的维度包括但不限于浏览器、访问来源、操作系统、广告内容等等。
为什么需要进行多维拆解?有时候一个非常笼统或者最终的指标你是看不出什么问题来的,但是进行拆分之后,很多细节问题就会浮现出来。
举个例子,某网站的跳出率是0.47、平均访问深度是4.39、平均访问时长是0.55分钟。如果你要提升用户的参与度,显然这样的数据会让你无从下手;但是你对这些指标进行拆解之后就会发现很多思路。
下面展示的是一个产品在不同操作系统下的用户参与度指标数据。
上海数据分析网仔细观察的话,你会发现移动端平台(android、windows phone、ios)的用户参与度极差,表现在跳出率极高、访问深度和平均访问时长很低。这样的话你就会发现问题,是不是我们的产品在移动端上没有做优化导致用户体验不好?在这样一个移动互联网时代,这是非常重要的一个问题。
3、用户分群
用户分群主要有两种分法:维度和行为组合。第一种根据用户的维度进行分群,比如从地区维度分,有北京、上海、广州、杭州等地的用户;从用户登录平台进行分群,有pc端、平板端和手机移动端用户。第二种根据用户行为组合进行分群,比如说每周在社区签到3次的用户与每周在社区签到少于3次的用户的区别,这个具体的我会在后面的留存分析中介绍。
4、用户细查
正如前面所说的,用户行为数据也是数据的一种,观察用户在你产品内的行为路径是一种非常直观的分析方法。在用户分群的基础上,一般抽取3-5个用户进行细查,即可覆盖分群用户大部分行为规律。
我们以一个产品的注册流程为例:
上海数据分析网用户经历了如下的操作流程:【访问官网】-【点击注册】-【输入号码】-【获取验证码】。本来是非常流畅的一个环节,但是却发现一个用户连续点击了3次【获取验证码】然后放弃提交。这就奇怪了,用户为什么会多次点击验证码呢?
这个时候我建议您去亲自体验一下您的产品,走一遍注册流程。你会发现,点击【获取验证码】后,经常迟迟收不到验证码;然后你又会不断点击【获取验证码】,所以就出现了上面的情况。
绝大多数产品都或多或少存在一些反人类的设计或者bug,通过用户细查可以很好地发现产品中存在的问题并且及时解决。
5、漏斗分析
漏斗是用于衡量转化效率的工具,因为从开始到结束的模型类似一个漏斗,因而得名。漏斗分析要注意的两个要点:
第一,不但要看总体的转化率,还要关注转化过程每一步的转化率;
第二,漏斗分析也需要进行多维度拆解,拆解之后可能会发现不同维度下的转化率也有很大差异。
某企业的注册流程采用邮箱方式,注册转化率一直很低,才27%;通过漏斗分析发现,主要流失在【提交验证码】的环节。
上海数据分析网经过了解发现,邮箱验证非常容易出现注册邮箱收不到邮件的情况,原因包括邮件代理商被屏蔽、邮件含有敏感字被归入垃圾邮箱、邮件送达时间过长等等。既然这么多不可控因素影响注册转化率,那就换一种验证方式。换成短信验证后,总体转化率提升到了43%,这是非常大的一个增长。
6、留存分析
留存,顾名思义就是新用户留下来持续使用产品的含义。 衡量留存的常见指标有:次日留存率、7日留存率、30日留存率等等。我们可以从两个方面去分析留存,一个是新用户的留存率,另一个是产品功能的留存。
上海数据分析网第一个案例:以社区网站为例,“每周签到3次”的用户留存率明显高于“每周签到少于3次”的用户。签到这一功能在无形中提升了社区的用户的粘性和留存率,这也是很多社群或者社区主推这个功能的原因。
第二个案例:首次注册微博,微博会向你推荐关注10个大v;首次注册linkedin,linkedin会向你推荐5个同事;申请信用卡时,发卡方会说信用卡消费满4笔即可抽取【无人机】大奖;很多社交产品规定,每周签到5次,用户可以获得双重积分或者虚拟货币。
在这里面“关注10个大v”、“关注5个同事”、“消费4笔”、“签到5次”就是我想说的magic number,这些数字都是通过长期的数据分析或者机器学习的方式发现的。实践证明,符合这些特征的用户留存度是最高的;运营人员需要不断去push,激励用户达到这个标准,从而提升留存率。
7、a/b测试与a/a测试
a/b测试是为了达到一个目标,采取了两套方案,一组用户采用a方案,一组用户采用b方案。通过实验观察两组方案的数据效果,判断两组方案的好坏。在a/b测试方面,谷歌是不遗余力地尝试;对于搜索结果的显示,谷歌会制定多种不同的方案(包括文案标题,字体大小,颜色等等),不断来优化搜索结果中广告的点击率。
这里需要注意的一点,a/b测试之前最好有a/a测试或者类似准备。什么是a/a测试?a/a测试是评估两个实验组是否是处于相同的水平,这样a/b测试才有意义。其实这和学校里面的控制变量法、实验组与对照组、双盲试验本质一样的。