数据分析需要读什么专业,想从事数据分析类的工作上大学学什么专业啊

1,想从事数据分析类的工作上大学学什么专业啊2,对数据分析感兴趣可以选什么专业3,喜欢分析数据作出最优选择适合学什么专业4,想当数据分析师要选什么专业5,想要做数据分析师应选择什么专业1,想从事数据分析类的工作上大学学什么专业啊 财经类的专业
2,对数据分析感兴趣可以选什么专业 机器学习,人工智能,大数据处理
3,喜欢分析数据作出最优选择适合学什么专业 这个可以选择数学专业,在数学领域有个精算师可以考取,那个是相当牛的。任务占坑
4,想当数据分析师要选什么专业 数据分析行业逐渐被企业和从业者青睐,很多人给小编留言,咨询从事数据分析选择什么专业更占优势?今天,我们也来聊聊。一、数学专业正所谓“学好数理化,走遍天下都不怕”,数据分析无外乎是从大量凌乱数据中发现隐含的规律,数学往往让人逻辑思维更严密,对数据更加敏感。二、统计学专业统计学是数据分析的基本功,贯穿数据分析的全过程,同时,系统学习统计学后,会对数据的理解与分析能力更专业,更深刻。三、计算机科学与技术专业数据分析会接触的很多工具和编程语言,如果你是计算机专业出身,在编程方面更占优势,在工具使用时,上手更快。四、社会学专业从经济学角度看,人具有经济性,会追求利益最大化。但从社会学角度看,具有社会性的人还会受社会群体心理影响。有社会学背景的数据分析师,能更合理解释市场现象。五、营销学专业数据分析师需为企业的营销决策提供支持,懂营销的数据分析师,思路会更清晰、更开阔。六、财务管理专业财务管理问题是企业选择投资项目的依据、评价财务状况的指标、评估决策效果的量尺,懂财务管理的数据分析师能更精准把握规律。七、心理学专业人才是企业稳定发展的基石,用户是企业的衣食父母。想提升市场占有率,企业就必须先提高人心占有率,因此,懂心理学的数据分析师,能更准确探测员工或用户的真实想法。所以,并非只有数学、统计学、计算机等理工科背景的人才能从事数据分析,其他背景专业的人,尤其是文科生也有同等的机会。毕竟,选择大于能力,能力大于专业,兴趣和努力决定我们未来能走多远。数据分析不是it行业,无需精通过多编程语言,数据分析更注重实操和业务能力,且现今数据分析工具,如:python、powerbi等已比较容易入门。从事数据分析,真正要提升的是逻辑思维能力、敏锐的洞察能力、良好的沟通表述能力……这些无需靠背景,通过努力也可拿下。硬实力:数据分析师需要学生有一定的数学、计算机背景,从这个出发点来说,数学、统计、计算机科学等专业可以从事数据分析工作。这三个专业的同学可以虽然可以处理大量数据,并且拥有很强的数据分析能力,但是这类同学对于business 和 marketing缺乏了解。软实力:软实力要求学生懂业务、懂管理,从这个出发点来说,信息管理、市场营销、电子商务、社会学、金融学等专业毕业后也可以从事数据分析相关工作。不过,这几个专业在业务方面可能专业度非常高,但是缺点也是非常明显的:缺乏很强的数学和计算机背景,在实际操作中缺乏相关的专业技能。更本质的看,数据分析是一种技能,人人可以学,学了都有用。这是个要用数据说话的年代,懂点数据相关知识可以更好的服务工作与学习。数据分析师一般是计算机或者数学相关专业。成为一个合格的大数据分析师应该学习和掌握以下技能: 统计分析:大数定律,抽样推测规律,秩和检验,回归分析,方差分析等; 可视化辅助工具:excel,ppt,思维导图,visio; 大数据处理框架:hadoop,kaffka,storm,elk,spark; 数据库:sqlite,mysql,mongodb,redis,cassandra,hbase; 数据仓库/商业智能:ssis数据仓库,ssas ssrs,dw; 数据挖掘工具:matlab,sas,spss; 人工智能:机器学习相关知识; 挖掘算法:数据结构,一致性,常用算法; 编程语言:python/r,ruby,java; 计算机对数据存储和保存了大量数据,包括科学家和工程师也都了丰富的研究和应用尽可能多的提取数量。然而想从大量数据中洞察出真正和有用的,更高价值的数据,都是需要人工干预的。这些人有丰富的行业经验和洞察力,而且对业务有深刻了解,并且能够使用好数据分析的工作,例如excel,spss,python/r等。这种职位一般存在于高科技公司,例如paypal和google,相信以后人工智能、大数据、云计算创业的很多中小型企业,对此职位的需要也会越来越多。 对以上知识进行有重点的学习,解决的方法是让各种技能达标: 初级数据分析师需要快速学习能力80分,数学知识40分,分析工具使用程度70分,编程语言30分,业务理解80分,逻辑思维80分,数据可视化能力40分,协调沟通能力80分。 高级数据分析师要达到快速学习能力80分,数学知识70分,分析工具使用程度90分,编程语言60分,业务理解90分,逻辑思维80分,数据可视化能力90分,协调沟通能力80分。 总之,成为分析师的重要点并非数学知识和编程能力,最重要提是业务理解和协调能力,所以针对不同的行业的分析师,要学习的行业知识也不尽相同,需要对症下药,实施不同学习策划和路径。 5,想要做数据分析师应选择什么专业 一、掌握基础、更新知识。基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识), 多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家深有感触的。数据库查询—sql数据分析师在计算机的层面的技能要求较低,主要是会sql,因为这里解决一个数据提取的问题。有机会可以去逛逛一些专业的数据论坛,学习一些sql技巧、新的函数,对你工作效率的提高是很有帮助的。统计知识与数据挖掘你要掌握基础的、成熟的数据建模方法、数据挖掘方法。例如:多元统计:回归分析、因子分析、离散等,数据挖掘中的:决策树、聚类、关联规则、神经网络等。但是还是应该关注一些博客、论坛中大家对于最新方法的介绍,或者是对老方法的新运用,不断更新自己知识,才能跟上时代,也许你工作中根本不会用到,但是未来呢?行业知识如果数据不结合具体的行业、业务知识,数据就是一堆数字,不代表任何东西。是冷冰冰,是不会产生任何价值的,数据驱动营销、提高科学决策一切都是空的。一名数据分析师,一定要对所在行业知识、业务知识有深入的了解。例如:看到某个数据,你首先必须要知道,这个数据的统计口径是什么?是如何取出来的?这个数据在这个行业, 在相应的业务是在哪个环节是产生的?数值的代表业务发生了什么(背景是什么)?对于a部门来说,本月新会员有10万,10万好还是不好呢?先问问上面的这个问题:对于a部门,1、新会员的统计口径是什么。第一次在使用a部门的产品的会员?还是在站在公司角度上说,第一次在公司发展业务接触的会员?2、是如何统计出来的。a:时间;是通过创建时间,还是业务完成时间。b:业务场景。是只要与业务发接触,例如下了单,还是要业务完成后,到成功支付。3、这个数据是在哪个环节统计出来。在注册环节,在下单环节,在成功支付环节。4、这个数据代表着什么。10万高吗?与历史相同比较?是否做了营销活动?这个行业处理行业生命同期哪个阶段?在前面二点,更多要求你能按业务逻辑,来进行数据的提取(更多是写sql代码从数据库取出数据)。后面二点,更重要是对业务了解,更行业知识了解,你才能进行相应的数据解读,才能让数据产生真正的价值,不是吗?对于新进入数据行业或者刚进入数据行业的朋友来说:行业知识都重要,也许你看到很多的数据行业的同仁,在微博或者写文章说,数据分析思想、行业知识、业务知识很重要。我非常同意。因为作为数据分析师,在发表任何观点的时候,都不要忘记你居于的背景是什么?但大家一定不要忘记了一些基本的技术,不要把基础去忘记了,如果一名数据分析师不会写sql,那麻烦就大了。哈哈。。你只有把数据先取对了,才能正确的分析,否则一切都是错误了,甚至会导致致命的结论。新同学,还是好好花时间把基础技能学好。因为基础技能你可以在短期内快速提高,但是在行业、业务知识的是一点一滴的积累起来的,有时候是急不来的,这更需要花时间慢慢去沉淀下来。不要过于追求很高级、高深的统计方法,我提倡有空还是要多去学习基本的统计学知识,从而提高工作效率,达到事半功倍。以我经验来说,我负责任告诉新进的同学,永远不要忘记基本知识、基本技能的学习。二、要有三心。1、细心。2、耐心。3、静心。数据分析师其实是一个细活,特别是在前文提到的例子中的前面二点。而且在数据分析过程中,是一个不断循环迭代的过程,所以一定在耐心,不怕麻烦,能静下心来不断去修改自己的分析思路。三、形成自己结构化的思维。数据分析师一定要严谨。而严谨一定要很强的结构化思维,如何提高结构化思维,也许只需要工作队中不断的实践。但是我推荐你用mindmanagement,首先把你的整个思路整理出来,然后根据分析不断深入、得到的信息不断增加的情况下去完善你的结构,慢慢你会形成一套自己的思想。当然有空的时候去看看《麦肯锡思维》、结构化逻辑思维训练的书也不错。在我以为多看看你身边更资深同事的报告,多问问他们是怎么去考虑这个问题的,别人的思想是怎么样的?他是怎么构建整个分析体系的。四、业务、行业、商业知识。当你掌握好前面的基本知识和一些技巧性东西的时候,你应该在业务、行业、商业知识的学习与积累上了。这个放在最后,不是不重要,而且非常重要,如果前面三点是决定你能否进入这个行业,那么这则是你进入这个行业后,能否成功的最根本的因素。 数据与具体行业知识的关系,比作池塘中鱼与水的关系一点都不过分,数据(鱼)离开了行业、业务背景(水)是死的,是不可能是“活”。而没有